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1 Introduction

Recent comments by academics and financial practitioners have highlighted [6,
3, 4] the importance of combining portfolio and execution optimizations in order
to capture the effects of signal decay, transaction costs and covariant risk of time-
dependent holdings. In this note, we show how the mean-variance optimizations
traditionally applied separately to portfolios[7] and execution trajectories[1] can
be cleanly combined within the framework of optimal control theory.

2 Optimal Control in Linear Systems with Quadratic
Cost

In this section, we review an application of dynamic programming and optimal
control. For more information, see [2], whose notation we follow closely here, or
[8], among others. Consider a generalized system described at time k by a state
vector xk. We allow the system to evolve over time as

xk+1 = Akxk +Bkuk + wk (1)

for k ≥ 0 where Ak and Bk are known but possibly time-dependent matrices,
wk is an uncorrelated random increment of mean zero, and uk is a control vector
which we apply in order to minimize an overall cost

V =
N∑
k=0

x′kQkxk + u′kRkuk (2)

that is quadratic in both state xk and control uk, with respective coefficient
matrices Qk and Rk, which are deterministic but may vary in time. This model,
known as Linear-Quadratic Regulation or LQR is a reasonable description of
systems that we wish to control towards some desired state (here x = 0) but
where there is a cost both to exerting that control and of deviation from the
desired state.

To search for an optimal set of controls

u∗k = arg min{uk}E{wk}

(
N∑
k

x′kQkkk + u′kRuk

)
(3)
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using the apparatus of dynamic programming, we solve for u∗k by working back-
wards and evaluating at each step the optimal total expected cost Jk(xk) that,
for a given state xk, will be incurred in steps k through N :

JN = x′NQNxN

Jk(xk) = min
uk

[x′kQxk + u′kRkuk + Ewk
(Jk+1(Akxk +Bkuk + wk))] (4)

It turns out that with quadratic costs there is an exact solution to this problem;
the optimal control is affine in x:

u∗k(xk) = −[(B′kKk+1Bk +Rk)−1B′kKk+1Ak]xk (5)

where Kk is a symmetric matrix that satisfies the Riccati Equation:

Kk = A′k(Kk+1 −Kk+1Bk(B′kKk+1Bk +Rk)−1B′kKk+1Ak +Qk (6)

The total expected cost given this optimal strategy is

J0 = x′0K0x0 +
N−1∑
k=0

E(w′kKk+1wk) (7)

Note that, while the total cost is affected by the random perturbations w, the
optimal control policy depends only on current state x. Our assumption that
the w have zero mean causes them to drop out when expectations are taken in
equation 4. This result is known as “certainty equivalence.”

It will prove useful to have a solution for 6 in the limit of continuous time
and constant coefficients. We make the substitutions (see [8]):

uk → u(t)
xk → x(t)

xk+1 → x(t+ δt)
wk → δw

A → (A− I)δt
B,Q,R → Bδt,Qδt,Rδt (8)

where w is now a Brownian motion. The state obeys the dynamics

ẋ = Ax+Bu+ dw/dt, (9)

and the total utility is

V =
∫ T

0

(x′Qx+ u′Ru)dt, (10)

leading to an optimal control

u∗ = −R−1B′Kx

0 = K̇ +Q+A′K +KA−KBR−1B′K (11)
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To develop an intuition for the implications of this mapping, it is useful
to look at a steady state solution, where there is no deterministic time depen-
dence, and no fixed time alloted for completion. We have already assumed
constant coefficients; we now further assume no breaking of time symmetry
through boundary conditions. Additionally, let A = 0, B = I, so u = ẋ and
(11) becomes

Q = KR−1K

Recall that K is symmetric; assume that Q is both symmetric and positive
definite, and that R is diagonal and positive. Pre- and post-multiply both sides
by R−

1
2 :

R−
1
2QR−

1
2 = (R−

1
2KR−

1
2 )2

The left-hand side can be diagonalized as

R−
1
2QR−

1
2 = UM2U ′ = (UMU ′)2

where U is an orthonormal matrix and M2 is diagonal. It follows that

K = R
1
2UMU ′R

1
2 (12)

u = −R−1Kx = −R− 1
2UMU ′R

1
2x

or, defining a matrix square-root via the diagonalization above,

ẋ = −R− 1
2

√
R−

1
2QR−

1
2R

1
2 · x (13)

3 Application to Optimal Liquidation

Almgren and Chriss[1] formalize optimal liquidation of stock holdings xk as the
minimization of a utility cost, which can be written in the continuous limit as

V =
∫ T

0

(λσ2x2 + ηẋ2)dt, (14)

where λ is a risk aversion, σ is the stock volatility and η is the coefficient for
price impact, which is linear in the rate of trading ẋ. This minimization can be
expressed directly in the LQR framework with A = 0, B = 1, Q = λσ2, R = η
and w = 0. Equation 11 reduces to

0 = K̇ + λσ2 −K2/η, (15)

which has solution

K =
√
λσ2η coth

(√
λσ2

η
· (T − t)

)
.
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When optimally controlled, ẋ = − 1
ηKx, which implies

x = x0
sinh(κ · (T − t))

sinh(κT )
(16)

with κ =
√
λσ2/η, exactly as in [1].

Note that the solution for T →∞, ie. with the same variance driven urgency
to trade but no hard time limit, is simpler and more intuitive. Setting K̇ = 0,
equation 15 reduces to K =

√
λσ2η, and the optimal trajectory is just

ẋ = −κx (17)
x = x0e

−κt (18)

We trade in direct proportion to the number of shares remaining to be executed.
The T →∞ solution for multiple stocks is just equations (12,13) above with

Q = λΩ
R = diag η

where Ω is a covariance matrix, λ is a coefficient of risk aversion and η is a
vector of linear price impact coefficients for each stock.

4 Simultaneous Optimization of Portfolio Hold-
ings and Execution

We write the total cost of a changing portfolio of holdings yk as

V =
∑
k

−αkyk + y′kQkyk + u′kRkuk (19)

with

Qk = λΩk
Rk = diag ηk

where Ωk and ηk are now time-dependent, αk is a time-dependent vector of
anticipated stock returns. Holdings are adjusted over time by trading

yk+1 = yk + uk

In general, any quantity with a k subscript can vary both deterministically
and stochastically, but for illustration purposes, we’ll now set Ω and η to be
constant, and let α evolve randomly

αk+1 = αk + νk,

where ν is an uncorrelated random variable with mean zero.
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Let ỹ be the instantaneously optimal holdings, given the current value of α:

ỹk = arg min
yk

−αkyk + y′kQyk

=
1
2
Q−1αk (20)

If there were no transaction costs, we would want yk = ỹk at all times. In prac-
tice, we will have to accept some displacement xk = yk− ỹk from instantaneous
optimality, with time evolution

xk+1 = xk + uk + wk (21)

The random perturbation wk = − 1
2Q
−1νk is still uncorrelated.

Rewriting equation 19 with yk = ỹk + xk, we have

U =
∑
k

[x′kQxk + u′kRuk] + [2ỹkQxk − αxk] + [ỹ′kQỹk − αỹk] (22)

Note that the second set of terms in square brackets is identically zero and
that the the third set of terms is a function only of ỹ and thus completely
unaffected by our choice of u. We thus get to ignore all but the first terms; the
minimization maps onto continuous LQR with A = 0, B = 1; and we have a
trading strategy given by equation 13. In each time period, the ideal portfolio
ỹ moves due to fluctuations in α, while our actual holdings y are adjusted by
trading towards the instantaneous target portfolio ỹ in matrix proportionality
to the distance y − ỹ. In general, we will never actually arrive at ỹ, but our
trading strategy represents the optimal extraction of utility given α, risk and
trading costs.

Engle and Ferstenberg[3] make use of the cancellation noted in equation
22 above, thereby arriving as we do at an optimization that depends only on
displacement from optimality. However, they make the unnecessary assumption
that that α and thus ỹ are constant, while also imposing the constraint that all
trading complete within an arbitrary period T that is itself much shorter than
the eventual holding period. This results in a static trajectory for y towards a
constant target. In [4], we argued that these assumptions were unrealistic; here
we note that they are unnecessary as long as the random perturbations in ỹ
have mean zero.

In practice, the mean zero assumption can be violated quite easily:

• There may be constraints on ỹ, in which case it will not be simply pro-
portional to α.

• Reasonable processes for α will be mean reverting and thus not uncorre-
lated; without mean-reversion, α will be unbounded, which is both finan-
cially and mathematically unreasonable.

• Ω and η may be time-varying.
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None of these situations prevent us from using dynamic programming to solve for
the optimal trading strategy, but in general the solution will involve numerical
computation. In particular, as noted in [4], portfolio constraints will necessitate
incorporation of full portfolio risk and α directly in the optimization. In the
very common case of mean-reverting alpha, LQR does give us some additional
useful tools, as discussed in the next section.

5 Mean reversion of distance from optimality

It is reasonable to consider a geometric mean-reverting process for alpha (and
thus for ỹ)

δα = −ζαδt+ σααδz, (23)

where δz is a Brownian motion. We may infer ζ = 1
2σ

2 from an assumption of
constant available alpha signal, δ(α · α) = 0.

While the LQR framework does not directly support mean reversion in ỹ, it
does allow it in x = y − ỹ in the state dynamics of equation 9 via a diagonal
matrix A, which for simplicity we earlier assumed to be zero. Instead, we will
assume that it is a negative multiple of the identity matrix, A = −gI. If we
retain A while following the procedure used to derive equation 13, we obtain

K = R
1
2

√
R−

1
2 (Q+A2R)R−

1
2R

1
2 +AR (24)

u = −R−1Kx (25)

where the square root is defined through the diagonalization procedure given
above. In one dimension,

u = −(
√
λσ2/η + g2 − g) · x (26)

We will return later to the question of how mean reversion in x can relate
to mean reversion in α.

6 Grinold’s Dynamic Portfolio Analysis

In the following discussion of Grinold’s recent article[8], we stick as closely as
possible to his notation. He posits a mean-reverting process for optimal holdings,
writing

δm = −g ·m(t−∆t) ·∆t+ u(t), (27)

where m is a vector of instantaneously optimal holdings, g is a scalar reversion
coefficient and u(t) is a random process of mean zero. He expresses the con-
servation of α as an equilibrium condition for the dollar variances of u and m,
ω2
u = 2gω2

m∆t. He suggests that actual holdings follow the trading policy

∆p = b · {m(t)− p(t−∆t)}∆t (28)

c©Pragma Securities 2008-2009 6



for some optional trading rate constant b (renamed here from Grinold’s d for
later clarity when using the notation of calculus) and assumes annual trading
costs proportional to the variance of the time rate of change of the actual hold-
ings

cp =
χ

2
ω2

∆P/∆t. (29)

Noting that this expression differs from our usual assumption of transaction cost
proportional to the integrated square of trading rate, rather than the square of
portfolio change due both to trading and price fluctuation, we propose a rough
equivalence

χ = 2η/σ2. (30)

Finally, he specifies a risk cost of 1
2λGω

2
P ; we add the G subscript to his risk

aversion parameter to make explicit the trivial difference from our convention:

λG = 2λ (31)

Relating expected portfolio return to the information ratio IR (discussed
and defined in [5]), he derives a total utility

UP (b, ωM ) =
b

b+ g

{
IRM · ωM −

λG/2 + χ · g · b
2

ω2
M

}
. (32)

At this point, Grinold holds d constant and solves for an optimal value of ωM ,

ω̂m(b) =
IRM

λG + χ · g · b
, (33)

the optimal rate of trading towards which is given by

∆p = b̂ · {m̂(t)− p(t−∆t)}∆t (34)

b̂ =
√
λG/χ (35)

It is our opinion that this step actually violates one of the central assumptions of
the paper, namely that m is indeed the model portfolio that one would possess
in a ideal world of costless transactions. We would fork off from his derivation
after his equation D-5 by keeping the usual relation

ωm = IRm/λG, (36)

independent of whatever d we end up using as we try to track m. We now have

UP (b, ωM ) =
1
2
b · ω2

m

b+ g
{λG − χ · g · b} (37)

which achieves its maximum at

b∗ =
√
λG/χ+ g2 − g (38)

Pleasantly, this is identical to equation 26 with the equations 30 and 31.
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7 Mean reversion and optimal trading

It may be, prima facie, surprising that identical optimal trading strategies re-
sult from assumptions, respectively, of mean-reverting optimal holdings and of
mean reverting distance from optimal holdings, with the same proportionality
constant in both cases. To see intuitively how this might happen, recall that an
Ornstein-Uhlenbeck process rt, where

dmt = −g ·mtdt+ σdWt, (39)

approaches a running exponentially-weighted average of a Brownian motion in
the long time limit:

mt =
∫ ∞

0

σe−gsdWt−s (40)

Similarly, a trading strategy for pt that is proportional to distance from opti-
mality is essentially a running average of the optimal portfolio mt:

pt =
∫ ∞

0

e−b·smt−sds (41)

=
∫ ∞

0

∫ ∞
0

e−bue−gvdWt−u−vdu (42)

A dynamically optimal portfolio is thus a lowpass-filtered instantaneously opti-
mal portfolio, which is a lowpass-filtered noise process.
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