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I.	 Introduction
Today’s execution algorithms were 
designed to address the needs 
of sell-side institutions, and as 
such they can be inappropriate 
or even damaging to buy-side 
portfolio managers and investors. 
The agency task, reflected in 
traditional implementation 
shortfall algorithms, is to minimise 
the mean and variance of execution 
shortfall of the basket being traded. 
By contrast, the goal of proprietary 
traders and the buy-side should be 
to minimise the risk and maximise 
the alpha of an entire portfolio. 
Unfortunately, the typical use 
of algorithms can force buy-side 
traders to behave as if they had 
sell-side priorities. To optimise 
the complete portfolio strategy, an 
algorithm needs two key features:
1. True portfolio level risk 

measurement, including 
positions not changing during 
a given trade – not just the 

marginal contribution of 
unexecuted shares.

2. Trajectory optimisation with 
accurately estimated time 
profile of alpha.

Below in section II, we illustrate 
how restricting risk measurement 
only to unexecuted shares creates 
trading pressures that degrade 
portfolio performance. In section 
III, we discuss the role of alpha in 
optimal trading and its elevated 
importance once portfolio risk is 
accurately calculated. In section 
IV, we touch on the mathematics 
behind today’s algorithms and the 
main incorrect assumption that 
leads to their suboptimal results.

II.	The	optimisation	problems	of	
the	portfolio	manager	and	the	
trader

Despite the traditional institutional 
separation of portfolio managers 
and traders, modern finance 
theory has shown that both groups 
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perform conceptually similar 
tasks. In a celebrated article in the 
1952 Journal of Finance, Harry 
Markowitz1 framed the managers’ 
problem as an optimisation: 
maximise the expected mean of 
returns, while minimising the 
risk from their variance. Nearly 
50 years later, Robert Almgren 
and Neil Chriss2 showed that 
trading can also be viewed as 
an optimisation: minimise the 
expected impact of executions, 
while also minimising the variance 
from the unexecuted positions. 
Today, skilled practitioners in both 
groups accomplish their respective 
optimisations with the help of 
sophisticated tools – constrained 
quadratic programming tools 
for the managers and execution 
algorithms for the traders.

The question we address here 
is whether the result of these two 
separate optimisations is in fact 
optimal for the total performance 
of the portfolio. In general, the 
answer is no, and the following 
simple example shows one of the 
reasons: the risk perceived by the 
trader differs from the actual risk 
of the portfolio, and mitigation 
of this perceived risk degrades 

overall strategy performance. (In 
section IV, below, we formalise 
and generalise this intuitive result 
in a mathematical notation.)

Suppose we have a pre-
existing portfolio consisting 
of a $10 million position in 
IBM. We wish to sell this, 
replacing it by an equivalent 
$10 million position in MO 
(Altria). Note that, while this 
example is somewhat contrived, 
its risk characteristics are close 
to what happens during a 
typical rebalance of an ongoing 
investment strategy.

First, look at this problem from 
the trader’s point of view. He knows 
nothing of the current position in 
IBM, and has simply been told to 
execute a buy/sell basket containing 
negative $10 million IBM and 
positive $10 million MO.

Assuming that the two stocks 
are uncorrelated with identical 
volatilities of 20%, the total 
volatility risk of this basket at the 
beginning of the trade is:

Vtrader, initial = 

√(2 × 102 × 0.22) =  

$2.8 million

1  Markowitz 
H., ‘Portfolio 
Selection’, 
The Journal of 
Finance, Vol 7, 
No. 1 (Mar. 1952), 
pp 77-91.

2  Almgren R. 
& Chriss N., 
2001, ‘Optimal 
Execution 
of Portfolio 
Transactions’, 
Journal of Risk, 
3, 5-39.

“The risk perceived by the trader differs from the actual 
risk of the portfolio. Mitigation of this perceived risk 

degrades overall strategy performance.”
n
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Halfway through the trade, he has 
$5 million of each, so:

Vtrader, half-way =  

√(2 × 52 × 0.22) = $1.4 million

And of course when he's done:

Vtrader,final = 0

The expected variance of execution 
shortfall will be proportional to V2 

and to the amount of time it takes 
to perform the trade. By contrast, 
the expected market impact will 
increase for short execution times. In 
a standard implementation shortfall 
algorithm, the higher is Vtrader, the 
shorter the execution time and the 
greater the market impact that results 
from the optimisation.

Now consider the risk from 
the true portfolio, containing +10 
million of IBM at the beginning 
and +10 million of MO at the 
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Figure	1:	
A	trader’s	perception	of	risk	during	an	execution	compared	to	
actual	total	portfolio	risk	during	an	exchange	of	one	asset	for	
another
A trading trajectory that is optimal given the trader’s perceived risk will not be optimal 
for the portfolio as a whole.
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end. The total volatility risk Vport 
of the portfolio is the same at the 
beginning and end of the trade:

Vport,initial = Vfinal =  

√(102 × 0.22 ) = $2 million

Half way through the trade, when 
we own $5 million each of IBM 
and MO, the volatility risk reflects 
the diversification of this mini-
portfolio:

Vport,half-way =  

√(2 x 52 × 0.22) = $1.4 million

Figure 1 shows that, while the 
trader perceives a risk that starts 
out large but decreases to zero by 
the end of the trade, the true risk 
of the portfolio starts out lower 
than the trader’s perception, dips 
slightly and then returns to its 
initial value. This discrepancy 
motivates several important 
observations:
1. The trader will perceive a higher 

urgency to trade than the overall 
portfolio requires, and as a 
consequence will be willing to 

incur higher market impact.
2. This unnecessarily high market 

impact, repeated over multiple 
rebalances, will degrade the 
overall performance of the 
portfolio strategy while not 
actually making it less risky. The 
result is a reduced Sharpe ratio.

3. Conventional transaction cost 
analysis (TCA), evaluating 
trading in the absence of 
portfolio context, will not 
detect the damage to the 
portfolio’s performance and 
could even penalise ‘truly’ 
optimal trading.

4. The trader was likely acting 
rationally, in accordance 
with his own compensation 
structure, which also ignores 
portfolio context.

Consider now what a portfolio-
aware execution optimisation 
algorithm would have done in 
the situation described above. 
The range of true variance is 
¼ the swing in the trader’s 
perceived variance, and it reaches 
a minimum halfway through 
execution, rather than at the 
end. Accordingly, the optimal 
trajectory will be much slower 

“Basket algorithms take into account the correlative 
interactions of stocks within the trading order but ignore 

the effect of other stocks in the portfolio, including those 
whose positions are not changing.”

n
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than conventional implementation 
shortfall solutions, and it will 
tend to linger in the middle where 
the variance is lowest. This is, 
of course, just one example and 
there are in fact situations where 
inclusion of portfolio dynamics 
will have precisely the opposite 
effect on the optimal rate of 
trading. There is no rule of thumb 
that substitutes for a complete 
algorithmic solution.

Note that the need to consider 
the portfolio context goes beyond 
the abilities of so-called basket 
algorithms. These take into 

account the correlative interactions 
of stocks within the trading order 
but ignore the effect of other stocks 
in the portfolio, including those 
whose positions are not changing. 
To correctly assess risk, minimise 
impact and measure performance, 
it is necessary to include the full set 
of interactions.

III.	The	time	dependence	of	
alpha	and	variance

If there were no reason to 
trade other than variance 
reduction, execution in the above 
example would simply stop 
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Figure	2:	
Typical	exponential	realisation	of	alpha	in	stock	prices,	with	
corresponding	exponential	decay	in	the	alpha	drift	rate	of	
those	stocks
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halfway through, at the point 
of maximum diversification. 
Obviously, there are other 
reasons, the most significant 
among them being the need 
to act on alpha signals. That 
is, we’re trading because we 
have information that MO will 
outperform IBM, so:
1. There is an opportunity cost 

to letting returns accrue before 
we’ve traded the assets.

2. The rate of return accrual is 
expected to diminish as the 
returns are realised through the 
trading of market participants.

Point 2 is especially important, 
because it implies that the 
magnitude of returns will be higher 
during the execution period than 
over the life of the portfolio. Alpha 
extraction may thus dominate 
other considerations during 
optimal execution, especially in 
cases such as the example above, 
where true risk is lower than 
apparent trader’s volatility. Figure 
2 shows the typical behavior 
of alpha over the time period 
following the arrival of a trading 
signal. Initially, the rate of change 

(or drift) in the stock price is 
rapid, but as the price incorporates 
realisation of alpha, the rate 
decreases. This alpha decay exhibits 
exponential time dependence.

For example, an asset in a 
portfolio that returns 10% per year 
will on average accrue 0.04% in a 
trading day. However, if trading 
reflects fresh information, a far 
greater than average fraction of 
that accrual will occur during the 
execution period. Depending on 
the type of information, we might 
see an expected rate of return in 
excess of 50bps per day during 
execution – over ten-times higher 
than the mean rate of the portfolio 
as a whole. Such amplified 
drift rates during the period of 
execution can match or dominate 
competing algorithmic factors 
like market impact. In general, 
the time profile of alpha can be 
quite complicated, even changing 
sign for some counter-trending 
strategies.

Alpha is not the only trading 
variable whose time-dependence 
affects optimal trading. In 
addition, the variance of equity 

“Trading and portfolio construction are both essentially 
optimisation activities that have traditionally been 

performed separately. We now know that this institutional 
separation of duties creates false incentives for both 
parties.”

n
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returns changes significantly over 
the course of the day. For example, 
Almgren et al3 measure volatility 
varying intraday by more than 
a factor of three. Since volatility 
enters both the calculation of 
market risk and the estimation 
of market impact, this time-
dependence can have a significant 
effect on the shape of the optimal 
trading trajectory.

IV.	Optimal	utility	in	portfolio	
selection	and	trade	execution

We can now pinpoint the 
mathematical assumption 
that is implicitly made when 
optimisations for portfolio 
selection and execution are 
performed separately. Following 
the notation of Robert Engle and 
Robert Ferstenberg4, we write 
the total utility function of the 
combined optimisation problem 
as:

Utotal = 
∑T

t=1 (-∆x't τ (∆xt) + x't-1μt 
- λx't-1Ωtxt-1)

Here, t represents discrete time 
intervals ending at T, x is a vector 
of position holdings over time, τ is 
a function for temporary market 
impact due to position changes 
∆x, µt is the coefficient of drift 
(expressing alpha), λ is the risk 
aversion, and Ωt is the covariance 

matrix of asset returns. This multi-
period utility function entangles 
the goals of portfolio manager and 
trader, and its maximisation results 
in a time-varying vector of asset 
holdings that achieve the optimal 
risk and impact-adjusted returns.

With the assumption that µ and 
Ω are constant over the trade and 
for the holding period that follows, 
Engle and Ferstenberg derive a 
relationship among µ, Ω and the 
terminal portfolio holdings xT

μ = 2λΩxT

and substitute it into Utotal 
(after expanding the Ω term and 
completing a square) to split out 
independent optimisations for the 
portfolio manager and trader:

Uport = x'Tμ - λx'TΩxT

Utrade = ∑T
t=1 [-∆x't τ (∆xt) - 

λ(xT - xt-1)'Ω(xT - xt-1)]

Since the first utility depends 
only on terminal holdings xT, 
while the second depends only 
on the unexecuted trade list, 
the optimisations seem to be 
independent of each other, and, 
what’s more, it appears that drift 
disappears completely from the 
trading problem. Unfortunately, 

3 R. Almgren, 
C. Thum, E. 
Hauptmann and 
H. Li, ‘Direct 
Estimation of 
Equity Market 
Impact’, Risk, July 
2005.

4 Engle, Robert F. 
and Ferstenberg, 
Robert, ‘Execution 
Risk’, April 
2006, NBER 
Working Paper 
No. W12165, 
National Bureau 
of Economic 
Research.
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these simplifications depend critically 
on the assumptions of constant drift 
rate and constant variance, which we 
know to be strongly violated in most 
trading situations.5

V.	Conclusion
Trading and portfolio construction 
are both essentially optimisation 
activities that have traditionally 
been performed separately. We now 
know that this institutional 
separation of duties creates false 
incentives for both parties – with 
corresponding false utilities for their 
respective optimisations – resulting 
in solutions that in combination are 
suboptimal for the performance of 

the portfolio as a whole. Thus, great 
traders with great trading software 
may nonetheless fail to serve the 
interests of the investor. The 
correct, global optimisation takes 
the entire lifecycle of holdings into 
account, including the true risk of 
the total dynamic portfolio, the 
market impact due to its 
continuous evolution, the time-
profile of alpha and the intraday 
volatility pattern. As investors come 
to realise the costs of performing 
separate, incomplete optimisations, 
vendors will respond with unified 
algorithms, and trading institutions 
will evolve the organisational 
changes required. n

5 ‘Risk Aversion 
in Optimized 
Execution’, 
2007, Pragma 
Financial Systems 
whitepaper.


